

la pierre naturelle et l'économie circulaire

9^E JOURNÉE TECHNIQUE DU CTMNC

MERCREDI 20 AVRIL 2016

PARTICIPATION AUX FRAIS 35,00 € TTC

COMPREND

ACCÈS AUX CONFÉRENCES, REPAS, PAUSE, DOSSIER

DANS LA LIMITE DES PLACES
DISPONIBLES (80 MAXI)

PROGRAMME

Animation de la journée : Claude Gargi - revue Pierre Actual

9h30 Accueil

9h45 INTRODUCTION

Jean-Louis Vaxelaire, Vice-président du CTMNC

10hm L'ÉCONOMIE CIRCULAIRE LES BASES POUR COMPRENDRE

Alain Geldron, ADEME

11hoo LES ACTIONS DU CTMNC POUR LA VALORISATION

DES CO-PRODUITS

Shahinaz Sayagh, CTMNC

11h30 DES EXEMPLES DE VALORISATION DE CO-PRODUITS DE CARRIÈRE

Jean-Louis Vaxelaire, Graniterie Petitjean

11h₄₅ LA VALORISATION DES BOUES DE SCIAGE

DANS LES ENROBÉS BITUMINEUX

Paul Marsac, IFSTTAR

12h30 Déjeuner

14h00 LA RÉUTILISATION DE PIERRES NATURELLES EN ARCHITECTURE

Lionel Devlieger, ROTOR

14h45 LA RÉUTILISATION DES PAVÉS DE LA VILLE DE PARIS

Pierre Pestel, EIVP et Patrick Marchetti, Ville de Paris

15h₃₀ L'ECONOMIE CIRCULAIRE, LES ATOUTS

DES PIERRES NATURELLES FRANÇAISES

Jacques Benharrous, SNROC

15h45 TABLE RONDE

« L'ECONOMIE CIRCULAIRE : QUELLES PERSPECTIVES

POUR LA FILIÈRE?»

PARTICIPANTS: Lionel Devlieger

Patrick Marchetti Paul Marsac Shahinaz Savagh

Jean-Louis Vaxelaire

16h30 SYNTHÈSE ET CONCLUSIONS

Jean-Louis Vaxelaire, Vice-président du CTMNC

16h₄₅ Fin de la journée

LNE - 1, RUE GASTON BOISSIER - 75015 PARIS

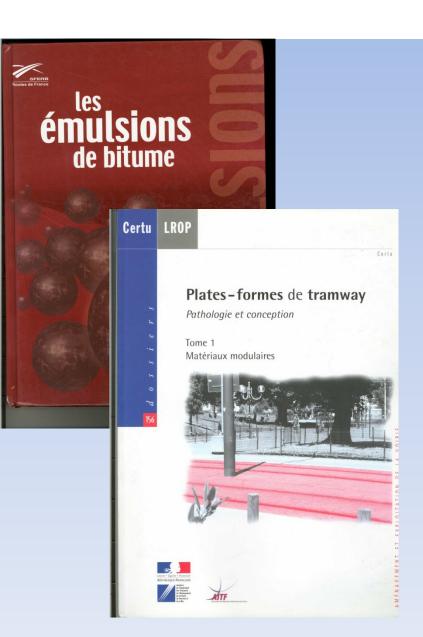
MÉTRO : M12 (STATION PORTE DE VERSAILLES) - M13 (STATION PORTE DE VANVES)

TRAMWAY : T3a (STATION GEORGES BRASSENS)

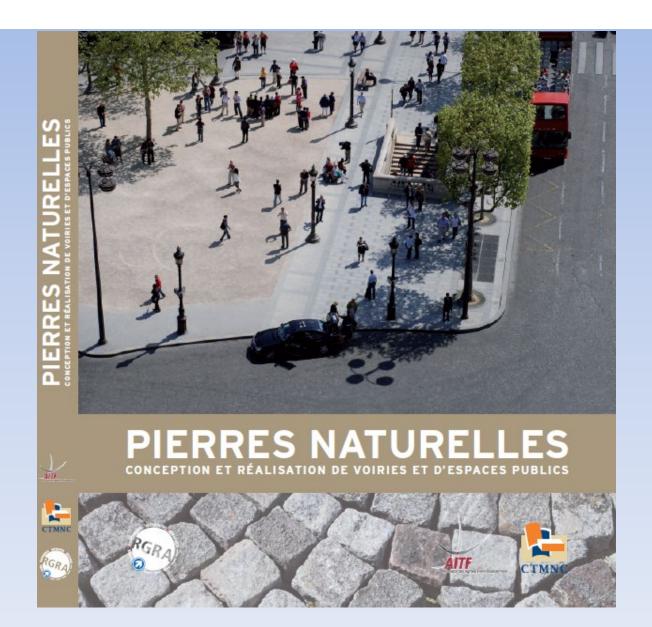
CONTACT NADÈGE VERRIER

CTMNC-ROC@CTMNC.FR
TÉL: 01 44 37 50 00

JOURNEE TECHNIQUE

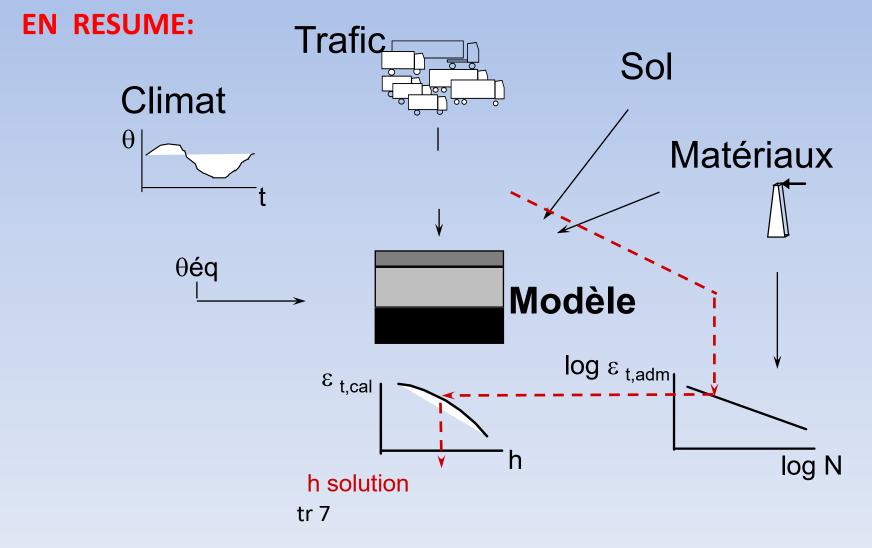

LES PIERRES NATURELLES EN AMENAGEMENT URBAIN

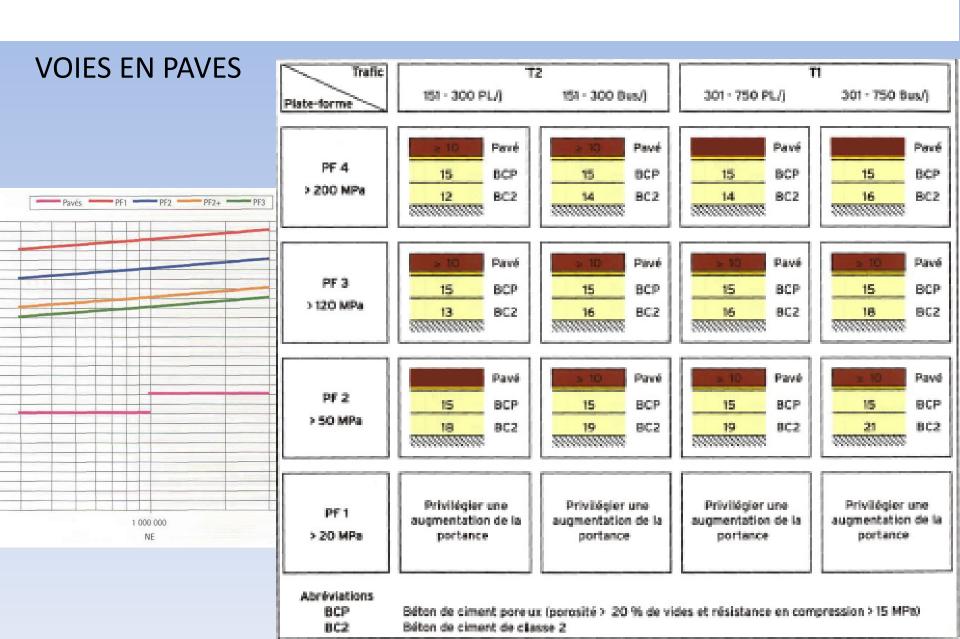
LE « DESIGN STRUCTUREL »

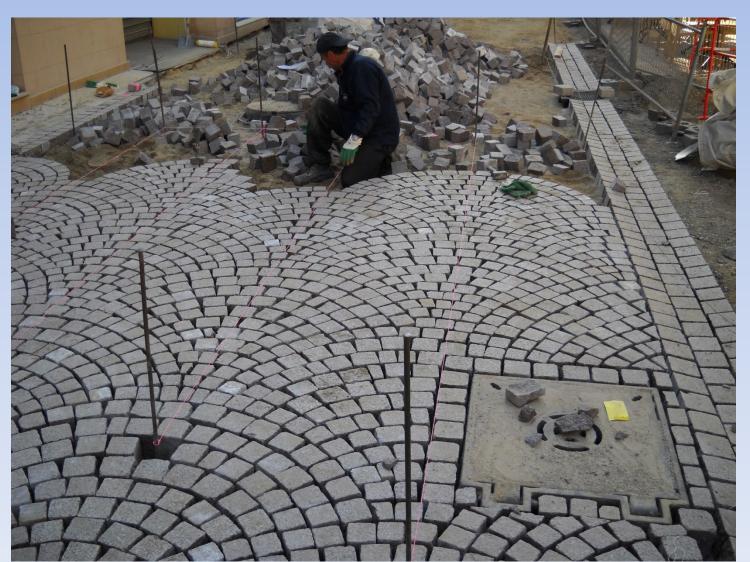

PRINCIPES ET CONTENU

LYON, le 07 Avril 2016 *Jean Pierre CHRISTORY*

ET DU ROBUSTE...







LE DIMENSIONNEMENT MECANIQUE DE LA STRUCTURE D'UNE VOIRIE

VOIES EN PAVES

LE DIMENSIONNEMENT DES ASSISES : UNE CONDITION NÉCESSAIRE ... MAIS PAS SUFFISANTE

SSENTIEL SUR...

Les pierres naturelles en voirie urbaine

Dimensionnement et mode de pose

par le Centre d'études sur les réseaux, les transports, l'urbanisme et les constructions publiques (Certu)

LE DIMENSIONNEMENT DES ASSISES :

UNE CONDITION NÉCESSAIRE ... MAIS PAS SUFFISANTE

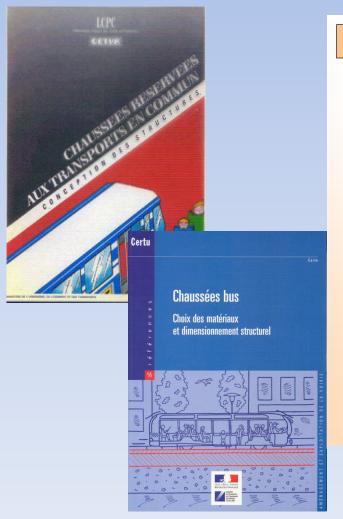
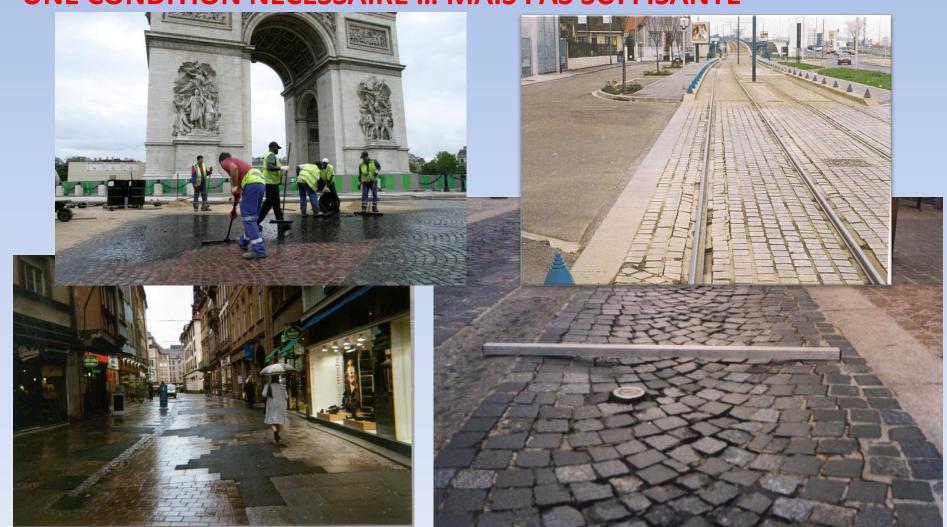

Béton de catégorie 5 de la norme NF EN 98-170

Plate- forme	Epaisseur de la couche d'assise par voie en cm				
	Desserte (25 PL/j	Distribution (150 PL/j	Principale (300 PL/j)	Bus jusqu'à 50 PL/j	Bus jusqu'à 150 PL/j
PF1	23	25	30	28	29
PF2	20	22	27	25	26
PF2+	18	19	24	22	23
PF3	17	18	23	21	22

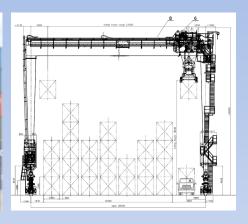
Grave-ciment catégorie T3 de la norme NF EN 13286-2

Plate- forme	Epaisseur de la couche d'assise par voie en cm					
	Desserte (25 PL/j	Distribution (150 PL/j	Principale (300 PL/j)	Bus jusqu'à 50 PL/j	Bus jusqu'à 150 PL/j	
PF1	21 + 21	22 + 22	25 + 26	24 + 24	25 + 25	
PF2	18 + 18	19 + 19	22 + 23	21 + 21	22 + 22	
PF2+	28	18 + 18	21 + 22	20 + 20	21 + 21	
PF3	26	30	20 + 21	19 + 19	20 + 20	


LE DIMENSIONNEMENT DES ASSISES : UNE CONDITION NÉCESSAIRE ... MAIS PAS SUFFISANTE

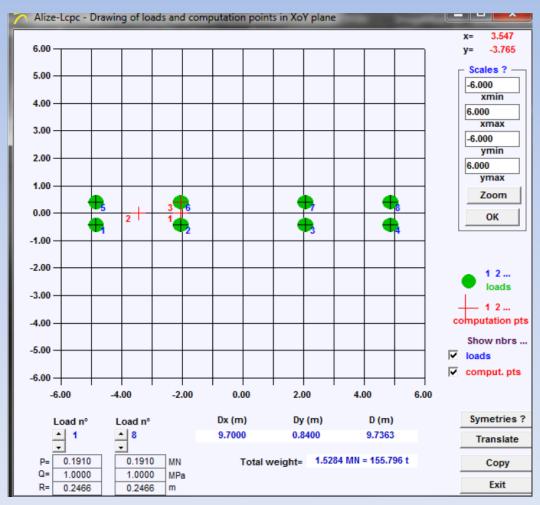
EXEMPLES DE STRUCTURES DE COULOIRS BUS Béton bitumineux **Asphalte** Béton de ciment 2 x 6 cm BB 0/10 (20 à 24 cm) 5 cm asphalte aux béton de ciment granulats de synthèse 20 cm de grave-laitier (15 cm)18 cm de grave-bitume béton maigre (150 kg) 20 cm de grave non (4 cm) BB 0/10 20 cm de grave-laitier traitée Ancienne chaussée pavée conservée 15 cm mâchefer Dalles préfabriquées de Pavés de béton Pavés de pierre béton armé 13 cm pavés pavé granit ou autobloquants porphyre 14 cm 5 cm sable pose chape au mortier 5 cm sable 0/5 (entre 4 et 10 cm) de ballastières 40 cm grave laitier dalle béton (300 kg) 30 cm GNT 0/20 25 cm silico-calcaire avec géotextile 10% de sable filérisé quartzite

LE DIMENSIONNEMENT DES ASSISES :


UNE CONDITION NÉCESSAIRE ... MAIS PAS SUFFISANTE

AU-DELA DES LIMITES DU SUJET POUR ILLUSTRER LE PROPOS...

Reach Straker RTG


75 T sur l'essieu avant, 37,5 T par jumelage

Rubber Tyred Gantry Crane

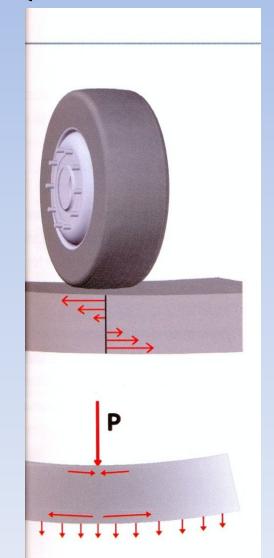
38 T par jumelage, 19T par roue

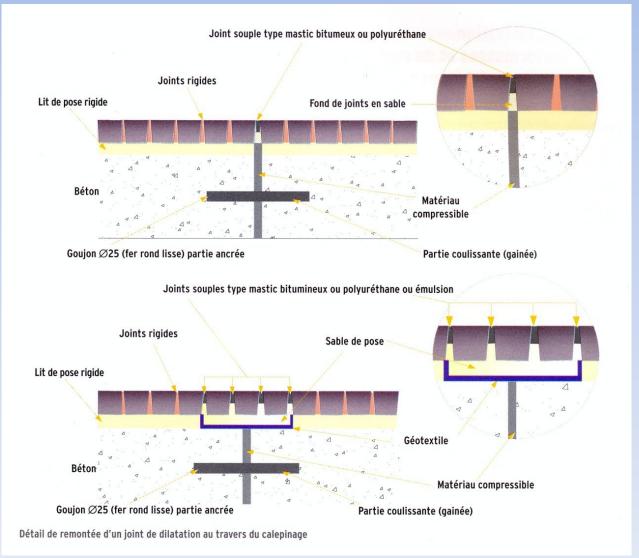
AU-DELA DES LIMITES DU SUJET POUR ILLUSTRER LE PROPOS...

Exemple de modélisation des jumelages d'un RTG

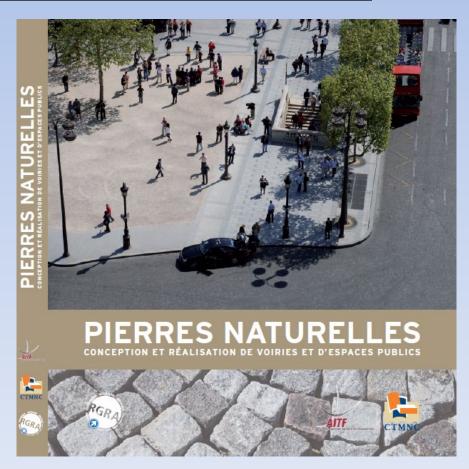
AU-DELA DES LIMITES DU SUJET POUR ILLUSTRER LE PROPOS...

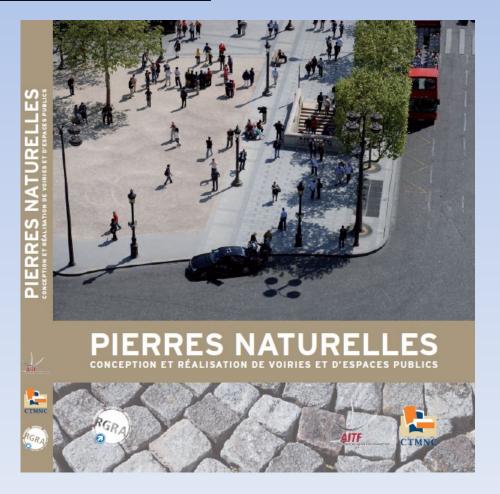
		Alolowable bending stress at bottom of RCC layer
Quay 30 for passes of 88,000 RTG, 4,000 reach stackers and container stacking	10 cm concrete blocks 3 cm bedding sand 55 cm C16/20 lean concrete 20 cm natural gravel Subgrade 80 MPa	4.201 Mpa under RTG loading
Quay 31 for 174,600 reach stackers passes	10 cm concrete blocks cm bedding sand 60 cm C15/20 lean concrete 20 cm natural gravel Subgrade 80 MPa	4.025 Mpa
Customs area for 800,598 reach stackers passes	10 cm concrete blocks cm bedding sand 62 cm C16/20 lean concrete 20 cm natural gravel Subgrade 80 MPa	3.660 Mpa


AU-DELA DES LIMITES DU SUJET POUR ILLUSTRER LE PROPOS...



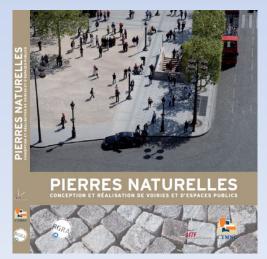
Boues blanches d'attrition à côté des traces de roues jumelées des RTG (source photo : groupe de travail PIANC chaussées portuaires – avril 2014)


AU-DELA DES LIMITES DU SUJET POUR ILLUSTRER LE PROPOS...



- 1 Le pavé, la dalle dans leur environnement
 - Choix
 - Conception
 - Dimensionnement
 - Formats
 - Sollicitations
 - Appareillage
 - lits de pose
 - Jointement
 - blocage de plaque
 - drainage d'interface
 - exécution

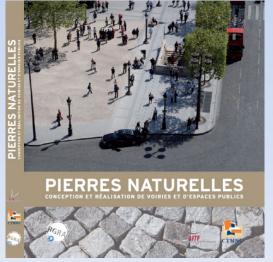
- 2 L'assise dans son environnement
 - . choix
 - . dimensionnement
 - . sollicitations
 - . plate-forme
 - . drainage
 - . exécution



L'ESSENTIEL DE LA CONCEPTION EN RÉSUMÉ

L'ESSENTIEL DE LA CONCEPTION

EN RÉSUMÉ


- 1/ RÉSISTANCE ET DIMENSIONS DES PAVÉS ET DALLES Cohérence avec trafic PL
- 2/ FORMES D'APPAREILLAGE Rapport aux sollicitations
- 3/ BLOCAGES DE LA PLAQUE PAVÉE OU DALLÉE
 Dispositions constructives pour les blocages transversaux et longitudinaux
- 4/ DRAINAGE
 Ruissellement, interface, conception exécution maintenance

L'ESSENTIEL DE LA CONCEPTION EN RÉSUMÉ

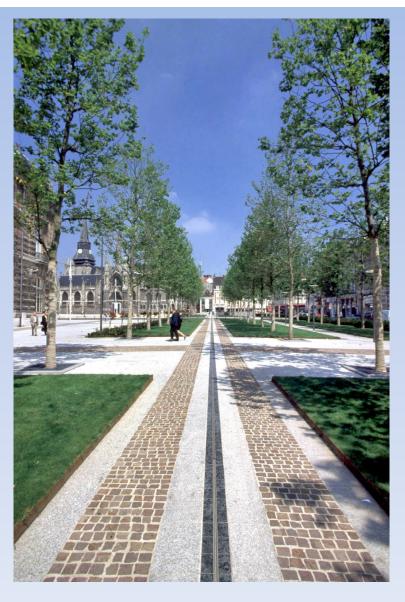
- 5/ COHÉRENCE ASSISE LIT DE POSE JOINTEMENT Dilatation
- 6/ CONDITIONS D'EXÉCUTION

 Maîtrise des délais de prise et durcissement
- 7/ CONTRÔLES QUALITÉ ET RÉCEPTION DES MATÉRIAUX
- 8/ PERFORMANCES ET CONTRÔLE DES BÉTONS ET MORTIERS SPÉCIAUX

L'ESSENTIEL DE LA CONCEPTION EN RÉSUMÉ

UN « THERMOMÈTRE » POUR CARACTÉRISER LA ROBUSTESSE, LES NIVEAUX D'EFFICACITÉ

- A principe ou valeur offrant les garanties optimales pour le critère considéré
- B principe ou valeur d'un niveau d'efficacité moyen pour le critère considéré
- C principe ou valeur d'efficacité minimale pour le critère considéré
- D principe ou valeur d'efficacité insuffisante ou inexistante pour le critère considéré


L'ESSENTIEL DE LA CONCEPTION EN RÉSUMÉ

LA VISION GLOBALE POUR L'AIDE A LA DECISION

		Dalles		
Trafics	Т3	T2	T1	T4
Nombre de PL/j < 3,5 t	51 - 150	151 - 300	301 - 750	26 - 50
Caractéristiques de résistance des produits	В	Α	Α	Α
Contrôles qualité et des procédures de réception	В	А	А	А
Formes d'appareillages	В	В	A (B)*	Α
Blocages de rives et longitudinaux	В	A (B)*	Α	Α
Principes de drainage	В	Α	Α	Α
Conditions d'exécution	В	Α	Α	Α
Cohérence assise/mode de pose/jointement	A (B)*	Α	Α	Α
Caractérisation des performances et du contrôle d'emploi des bétons et mortiers spéciaux	В	А	А	А

L'ESSENTIEL DE LA CONCEPTION

EN RÉSUMÉ

L'ESSENTIEL DE LA CONCEPTION EN DETAIL

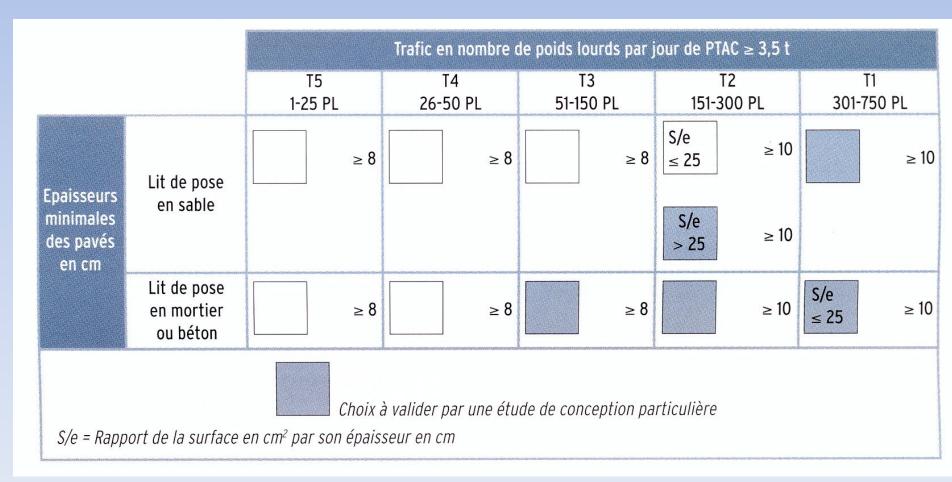
CRITERE N°1: RESISTANCE ET DIMENSIONS DES PAVES ET DES DALLES

L'ESSENTIEL DE LA CONCEPTION EN DETAIL

1/ RÉSISTANCE ET DIMENSIONS DES PAVÉS ET DALLES

1.1/ Cohérence avec trafic PL

Conception et dimensionnement des chaussées


Paramètres d'entrée du dimensionnement:

Trafic	Т5	T4	Т3	T2	T1	T0	TS	TEX
PL-MJA / sens	25	5 50	15	0 30	0 75	0 2 00	00 5 0	00
	FAIBLE/MOYEN		FC	FORT		RÈS FORT		
	1							
Trafic	TC1	TC2	TC3	TC4	TC5	TC6	TC7	TC8
NCPL / sens (10 ⁶)	0,2 0,5 1,5 2,5 6,5 17,5 43,5						5	
FAIB		<mark>LE/MO</mark>	/EN	FOF	RT	TRI	ÈS FOR	Т
Plate-forme		PF1	Р	F2	PF3	PF	4	
Module (MPa)		20	5	0	120	200)	

L'ESSENTIEL DE LA CONCEPTION EN DETAIL

1/ RÉSISTANCE ET DIMENSIONS DES PAVÉS ET DALLES

1.1/ Cohérence avec trafic PL

EN DETAIL

1/ RÉSISTANCE ET DIMENSIONS DES PAVÉS ET DALLES

1.2/ Résistance et dimensions

PAVÉS

Résistance en compression	Classes de trafic PL					
Rc MPa	T1	T2	Т3	Т3	T4	T5
> 120	A	A	Α	Α	Α	Α
110 à 120	В	В	A	A	A	A
100 à 110	С	С	В	A	Α	А
60 à 100	D	D	С	В	A	Α

EN DETAIL

1/ RÉSISTANCE ET DIMENSIONS DES PAVÉS ET DALLES

1.2/ Résistance et dimensions

DALLES

$$T = \sqrt{\frac{P \times Fs \times 1500 \times L}{W \times R_{tf}}}$$

Dimensions du produit	Pose sur mortier	Pose sur sable
Pour W et L≤600 mm	Fs = 1,2	Fs = 1,8
Pour W ou L > 600 mm	Fs = 1,8	Fs = 2,4

T épaisseur

L longueur de la dalle

W largeur

Rtf Valeur Minimale Attendue de la résistance en flexion

Fs coefficient de pose et de sécurité

Autres conditions de robustesse

R mini: 25 ou 30 KN, classe 250 ou 300

Dimension maxi: 60 cm, 40 cm pour T = 6 cm

Elancement (L/W):

$$< 1,5 \text{ pour T} = 8, 10, 12 \text{ cm}$$

< 1 pour T = 6 cm

1/ RÉSISTANCE ET DIMENSIONS DES PAVÉS ET DALLES

1.2/ Résistance et dimensions

PAS SEULEMENT LA RESISTANCE...
MAIS AUSSI LES CARACTERISTIQUES DE SURFACE ET L'ADHERENCE...

Les indicateurs des essais conventionnels :

- Abrasion (Usure)
- Coefficient de frottement

...ne suffisent pas selon le tracé et la pente de la chaussée.

Il faut aussi considérer :

- la microtexture
- la macrotexture
- la mégatexture

1/ RÉSISTANCE ET DIMENSIONS DES PAVÉS ET DALLES

1.2/ Résistance et dimensions

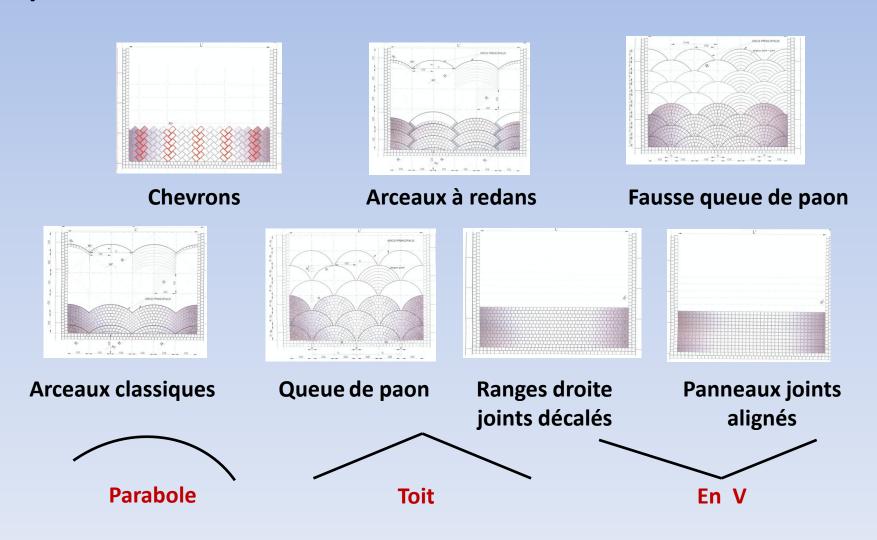
Pour garantir les caractéristiques de RUGUOSITE de la surface, il faut des pierres:

- ° DURES
- ° PRENANT DES FINITIONS PEU POLISSABLES
- ° RESISTANTES à L'USURE, au CHOC et à la FRAGMENTATION

ESSAI CEN/TS 12633 – 2014 (étude en cours au CTMNC)

AUTRES PISTES?:

RESISTANCE AU POLISSAGE


RESISTANCE A L'USURE Micro Deval

RESISTANCE A LA FRAGMENTATION Los Angeles LA

< 25

CRITERE N°2: FORMES D'APPAREILLAGE ET DE PROFIL

2/ FORMES D'APPAREILLAGE ET DE PROFIL

EN DETAIL

2/ FORMES D'APPAREILLAGE ET DE PROFIL

2/ FORMES D'APPAREILLAGE ET DE PROFIL

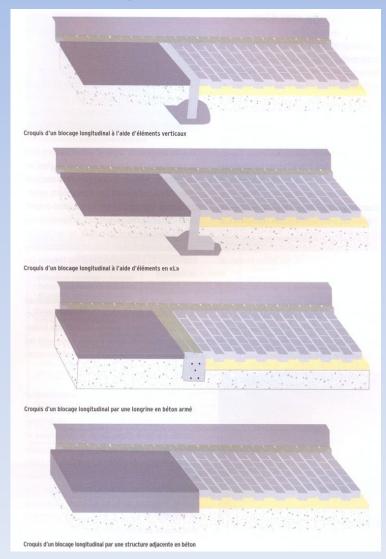
Appareillage	Forme du profil en travers		
	Paraboliqu	En Toit	En V
	е		
Chevrons	Α	В	С
Arceaux à redans	Α	В	С
Fausse queue de paon	Α	В	С
Arceaux classiques	Α	В	С
Queue de paon	Α	В	С
Range droite à joints décalés	A ou B	С	D
Panneaux joints alignés	D	D	D

CRITERE N°3: BLOCAGES DE LA PLAQUE PAVEE OU DALLEE

EN DETAIL

3/ BLOCAGES DE LA PLAQUE PAVÉE OU DALLÉE, BLOCAGES DE RIVES, LONGITUDINAUX, TRANSVERSAUX

3.1/ QUELQUES PATHOLOGIES À ÉRADIQUER



EN DETAIL

3/ BLOCAGES DE LA PLAQUE PAVÉE OU DALLÉE, BLOCAGES DE RIVES,

LONGITUDINAUX, TRANSVERSAUX

3.2/ BLOCAGES

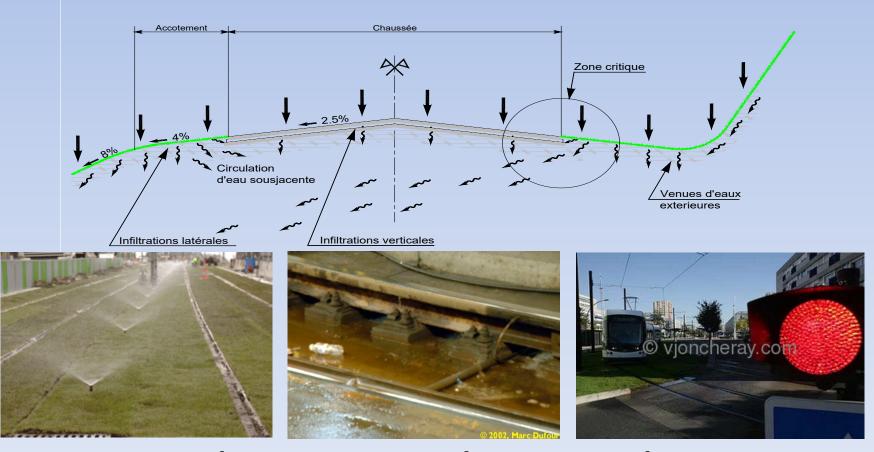
EN DETAIL

3/ BLOCAGES DE LA PLAQUE PAVÉE OU DALLÉE, BLOCAGES DE RIVES, LONGITUDINAUX, TRANSVERSAUX

3.2/ BLOCAGES

Nature de la « butée »	Taille maximale de la maille de blocage			
	50 m²	100m²	150m²	
Structure adjacente en béton	Α	Α	Α	
Profilés transversaux en L noyés	Α	А	Α	
Longrines armées	Α	Α	Α	
Eléments verticaux	В	В	С	
Pavés ép > 14 cm scellés à la résine	В	В	С	
Structure adjacente semi-rigide	В	С	С	
Structure adjacente souple	D	D	D	

CRITERE N°4: DRAINAGE, EAUX DE RUISSELLEMENT, EAUX D'INTERFACE


EN DETAIL

4/ DRAINAGE, EAUX DE RUISSELLEMENT, EAUX D'INTERFACE 4.1/ LE RÔLE DESTRUCTEUR DE L'EAU, DÉCUPLÉ PAR LA PRESSION

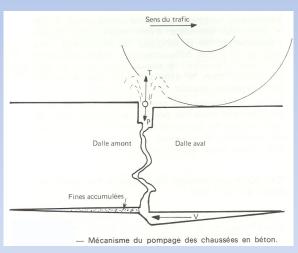
EN DETAIL

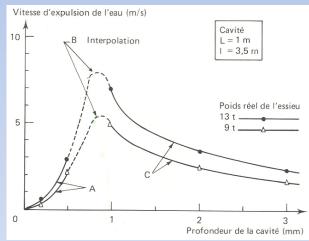
4/ DRAINAGE, EAUX DE RUISSELLEMENT, EAUX D'INTERFACE 4.2/ L'EAU SOUS TOUTES SES FORMES

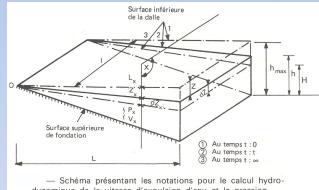
CYCLE: Émission/apport - Écoulement - Évacuation

EN DETAIL

4/ DRAINAGE, EAUX DE RUISSELLEMENT, EAUX D'INTERFACE 4.3/ L'EAU « DYNAMIQUE » BIEN MAITRISEE...



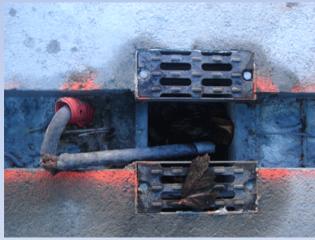

4/ DRAINAGE, EAUX DE RUISSELLEMENT, EAUX D'INTERFACE 4.4/ L'EAU « STATIQUE » PEU ABONDANTE MAIS SOURNOISE...



Aucun revêtement et assemblage n'est « étanche », au mieux imperméable à l'état neuf.....

4/ DRAINAGE, EAUX DE RUISSELLEMENT, EAUX D'INTERFACE 4.5/ L'EAU « STATIQUE » D'INTERFACE

dynamique de la vitesse d'expulsion d'eau et la pression.


L : longueur de la cavité; l : largeur de la cavité; h_{\max} : profondeur initiale de la cavité; h : profondeur de la cavité au temps t (h = hmay - Z où Z est la déflexion); H : profondeur de la cavité au temps $= \infty$ (H = $h_{max} - Z_{max}$ où Z..... est la déflexion maximale).

Pression et érosion sous cycles répétés

4/ DRAINAGE, EAUX DE RUISSELLEMENT, EAUX D'INTERFACE 4.6/ L'EAU « DYNAMIQUE » DEVIENT EAU « STATIQUE »

Nécessité d'introduire le concept D'EXPLOITATION en sus des

dimensionnements - PHYSIQUE

- MECANIQUE
- HYDRAULIQUE

4/ DRAINAGE, EAUX DE RUISSELLEMENT, EAUX D'INTERFACE 4.7/ LES EQUIPEMENTS DE DRAINAGE LOCAUX OU PONCTUELS

Robustes et curables (Ø>12cm)

4/ DRAINAGE, EAUX DE RUISSELLEMENT, EAUX D'INTERFACE 4.8/ LES EQUIPEMENTS DE DRAINAGE REPARTIS

LE BETON DRAINANT, LE BETON POREUX

4/ DRAINAGE, EAUX DE RUISSELLEMENT, EAUX D'INTERFACE

4.9/ LES LEVIERS D'ACTION CONTRE LES EFFETS DOMMAGEABLES

- un cycle de l'eau de ruissellement efficace... > conception du système d'assainissement
- une imperméabilisation toute relative... > système de jointements
- une évacuation toujours prête à fonctionner > typologie du lit de pose et de l'assise (porosité ...)

- 1. DÉRIVER L'EAU
- 2. EMPÊCHER L'EAU DE PÉNÉTRER DANS LA STRUCTURE ET LES INTERFACES
- 3. ÉVACUER L'EAU QUI S'EST NÉANMOINS INTRODUITE ...

4/ DRAINAGE, EAUX DE RUISSELLEMENT, EAUX D'INTERFACE

4.10/ LES CRITERES D'EFFICACITE:

conception du système d'assainissement

capacité hydraulique robustesse matériaux + drains et conduites drains et caniveaux entretenables absence de barrières d'écoulement

système de jointement

joints à haute adhérence

bitume résine

mortier spécial

joints conventionnels

sable stabilisé mortier

typologie du lit de pose et de l'assise

lit de pose conventionnel sur assise non poreuse

lit de pose drainant + drains sur assise non poreuse lit de pose drainant + assise béton poreux ou GB drainante

CRITERE N°5: COHÉRENCE: ASSISE - LIT DE POSE JOINTEMENT

5/ COHÉRENCE ASSISE - LIT DE POSE - JOINTEMENT

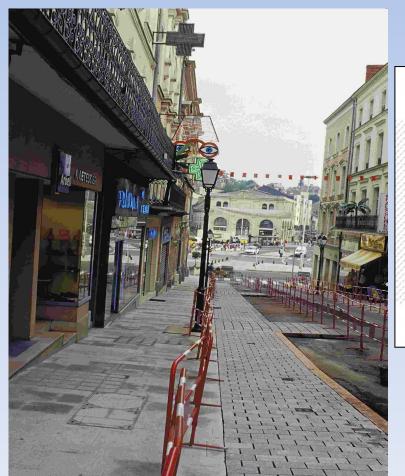
Nature de l'assise	Nature du lit de pose	Type de joint	Niveau d'efficacité pour les pavés	Niveau d'efficacité pour les dalles
Souple	Sable	Joints souples (sables, sables stabilisés, produits bitumineux)	Α	С
(non traitée)	Sable	Joints rigides (mortiers)	Proscrit	Proscrit
	Mortier	Joints rigides (mortiers)	proscrit	proscrit
Bitumineuse	Sable	Joints souples (sables, sables stabilisés, mélange bitumineux)	Α	В
épaisse	Sable	Joints rigides (mortiers)	Proscrit	Proscrit
(déflexion <	Mortier	Joints rigides (mortiers + joints de dilatation)	С	С
50/100e mm)	Mortier	Mortier sans joint de dilatation	Proscrit	Proscrit
Semi-rigide ou	Sable	Joints souples (sables, sables stabilisés, mélange bitumineux)	Α	В
mixte	Sable	Joints rigides (mortiers)	Proscrit	Proscrit
(déflexion <	Mortier	Mortier (hydraulique ou organique + joint de dilatation)	С	D
40/100e mm)	Mortier	Mortier sans joint de dilatation	Proscrit	Proscrit
Rigide	Sable	Joints souples (sables, sables stabilisés, mélange bitumineux	Α	Α
(déflexion <	Sable	Joints rigides (mortiers)	Proscrit	Proscrit
15/100e mm)	Mortier	Mortier (hydraulique ou organique + joint de dilatation	В	В
	Mortier	Mortier sans joint de dilatation	Proscrit	Proscrit
	Mortier spécial	Mortier spécial de jointement et joint de dilatation	Α	Α
	Mortier spécial	Mortier spécial sans joint de dilatation	Proscrit	Proscrit

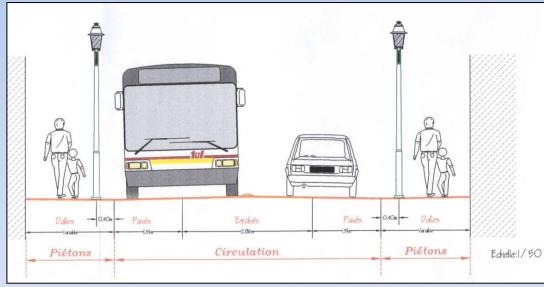
5/ COHÉRENCE ASSISE / LIT DE POSE/ JOINTEMENT / JOINT DILATATION

CRITERE N°6: CONDITIONS D'EXÉCUTION

6/ CONDITIONS D'EXÉCUTION : RISQUES DE NON MAÎTRISE DES DÉLAIS DE PRISE ET DURCISSEMENT

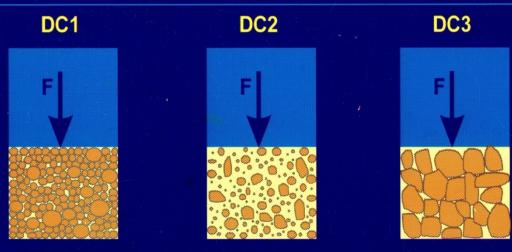
Typologie du lit de pose et jointement	Lit de pose sable joint	Lit de pose bét		Lit de pose sable émulsion,
Typologie du chantier	sable, sable stabilisé, gravillon	Traditionn els	Spéciaux	mastic bitumineux, joints, résine
Espace physiquement inaccessible à la circulation	Α	Α	Α	Α
Opération neuve isolée barriérée	Α	С	В	Α
Opération de réhabilitation Chantier fermé avec barriérage lourd	Α	В	Α	Α
Opération de réhabilitation à avancement progressif sur site en exploitation	A	С	В	A

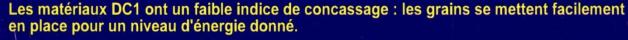

EN DETAIL


6/ CONDITIONS D'EXÉCUTION : RISQUES DE NON MAÎTRISE DES DÉLAIS DE PRISE ET DURCISSEMENT

EN DETAIL

6 bis/ CONDITIONS D'EXÉCUTION : RISQUES DE NON MAÎTRISE DE LA QUALITE DE COMPACTAGE DE L'ASSISE




EN DETAIL

6 bis/ CONDITIONS D'EXÉCUTION : RISQUES DE NON MAÎTRISE DE LA QUALITE DE COMPACTAGE DE L'ASSISE

REMBLAYAGE DES TRANCHÉES ET RÉFECTION DES CHAUSSÉES

RÉFECTION Difficulté de compactage

Les matériaux DC2 ont un indice de concassage moyen : pour un même niveau dénergie, la mise en place des grains est plus difficile.

Les matériaux DC3 ont un indice de concassage élevé : pour un même niveau d'énergie, la mise en place des grains devient encore plus difficile.

EN DETAIL

6 bis/ CONDITIONS D'EXÉCUTION : RISQUES DE NON MAÎTRISE DE LA QUALITE DE COMPACTAGE DE L'ASSISE

REMBLAYAGE DES TRANCHÉES ET RÉFECTION DES CHAUSSÉES MATÉRIELS

Compacteur tandem deux cylindre vibrants PV2

Plaque vibrante PQ3

Pilonneuse vibrante PN2

EN DETAIL

6 bis/ CONDITIONS D'EXÉCUTION : RISQUES DE NON MAÎTRISE DE LA QUALITE DE COMPACTAGE DE L'ASSISE

6 bis/ CONDITIONS D'EXÉCUTION : RISQUES DE NON MAÎTRISE DE LA QUALITE DE COMPACTAGE DE L'ASSISE

INCIDENCE DU COMPACTAGE SUR LES PROPRIETES PHYSIQUES ET MECANIQUES DES MATERIAUX :

POUR COMPENSER UNE BAISSE DU TAUX DE COMPACTAGE DE 5%, IL FAUT UNE SUREPAISSEUR DE COUCHE DE GRAVE CIMENT DE 4 A 5 CM

CRITERE N°7: CONTRÔLES QUALITÉ ET PROCÉDURES DE RÉCEPTION DES PRODUITS

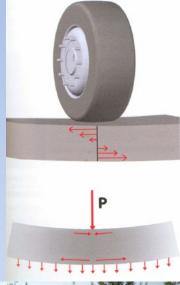
7/ CONTRÔLES QUALITÉ ET PROCÉDURES DE RÉCEPTION DES PRODUITS

Niveau d'efficacité	Contrôles qualité	Procédures de réception des produits		
	PV d'identité et d'essais d'aptitude à l'emploi certifiés, datés et réalisés par un laboratoire indépendant pour chaque origine des pierres	Réception par lot ou/et par type de produit au prorata de la quantité livrée selon indications du marché par le maître d'œuvre (modalités et fréquence) avec constats de réceptions partielles transmis au MO et Moe à l'avancement		
Niveau A	Fourniture d'échantillons de référence pour contrôle d'aspect à la remise des offres et d'éprouvettes pour vérification des caractéristiques des pierres par un laboratoire indépendant avant l'attribution du marché	Contrôles d'aspect en comparaison à l'échantillon de référence, contrôles dimensionnels		
	Contrôle qualité interne en continu, SOPAQ ou SPU, PAQ Contrôle extérieur à la demande du maître d'œuvre	Vérification des caractéristiques par un laboratoire accrédité sur des échantillons prélevés contradictoirement sur des lots désignés par le maître d'œuvre		
	Rédaction d'un système de réfaction contractualisé pouvant aller jusqu'à l'arrachage du revêtement	Essais d'identité, en compression pour les pavés et en flexion pour les dalles avec en option essais de glissance et résistance à l'usure		

L'ESSENTIEL DE LA CONCEPTION

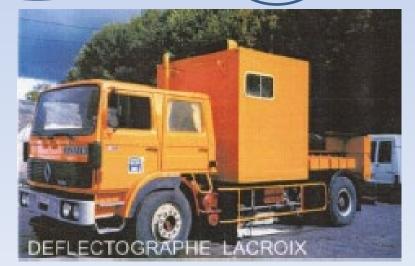
EN DETAIL

7/ CONTRÔLES QUALITÉ ET PROCÉDURES DE RÉCEPTION DES PRODUITS



L'ESSENTIEL DE LA CONCEPTION

EN DETAIL


7/ CONTRÔLES QUALITÉ ET PROCÉDURES DE RÉCEPTION DES

PRODUITS

Type et matériaux de l'assise	Déflexion maximale en 1/100 de millimètres sous revêtement de Pavés		
. Souple GNT	Déflexion non spécifiée (pose des pavés en mode souple)		
Souple Bitumineuse épaisse	50		
Semi-rigide MTLH*	40		
Rigide Béton de ciment	15		

CRITERE N°8: PERFORMANCE ET CONTRÔLES DES BÉTONS ET MORTIERS SPÉCIAUX

L'ESSENTIEL DE LA CONCEPTION EN DETAIL

8/ PERFORMANCE ET CONTRÔLES DES BÉTONS ET MORTIERS SPÉCIAUX

Niveau A	Vérification positive des conditions de fabrication et de mise en œuvre avec le contexte du chantier et de toutes caractéristiques garanties des mortiers et bétons spéciaux SOPAQ de mise en œuvre avec contrôle continu
Niveau B	Vérification positive des conditions de fabrication et de mise en œuvre avec le contexte du chantier, des caractéristiques garanties pour au moins celles relatives à la maniabilité, à la flexion, et au gel sévère. Respect des seuils diminués d'au maximum de 10 % des caractéristiques garanties pour le retrait et l'adhérence, SOPAQ de mise en œuvre avec contrôle continu.
Niveau C	Vérification positive des conditions de fabrication et de mise en œuvre avec le contexte du chantier, des caractéristiques garanties pour au moins celles relatives à la maniabilité, à la flexion, et au gel sévère. Respect des seuils diminués d'au maximum 10 % des caractéristiques garanties pour le retrait et l'adhérence sans système qualité
Niveau D	Information manquante ou vérification négative sur une seule des exigences requises pour relever du niveau C

Les points de vigilance :

Maniabilité, Résistance à la flexion, gel, retrait, adhérence....

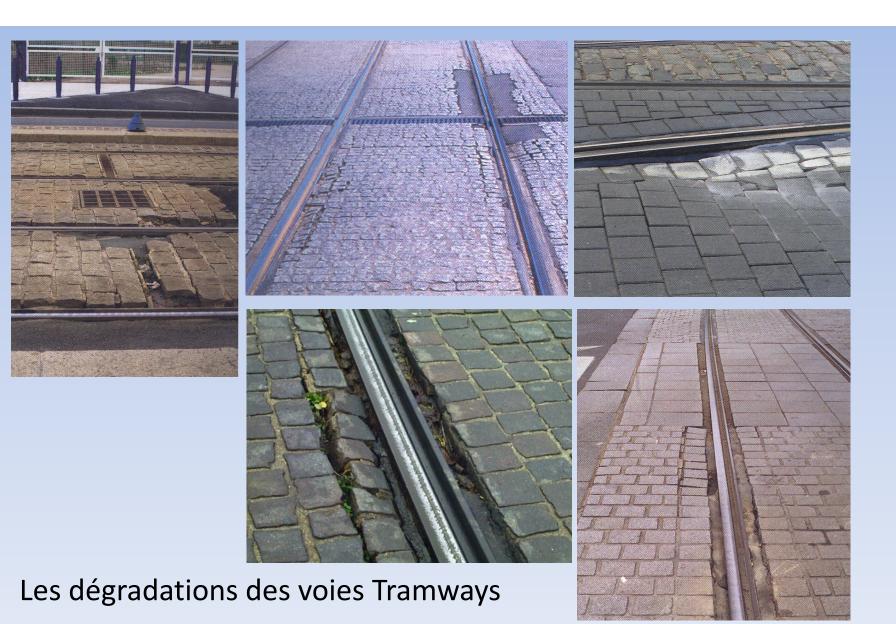
RESUME

L'ESSENTIEL DE LA CONCEPTION EN DETAIL

9/ RÉSUMÉ D'UNE LOGIQUE EN TROIS ÉTAPES:

• Introduire le concept de niveau d'efficacité A, B, C D

• Instruire chacun des 8 leviers d'action en terme d'efficacité


 Consolider la synthèse par la vision globale des niveaux d'efficacité des 8 leviers d'actions et les mettre en perspective avec les exigences du niveau de sollicitation


L'ESSENTIEL DE LA CONCEPTION EN DETAIL

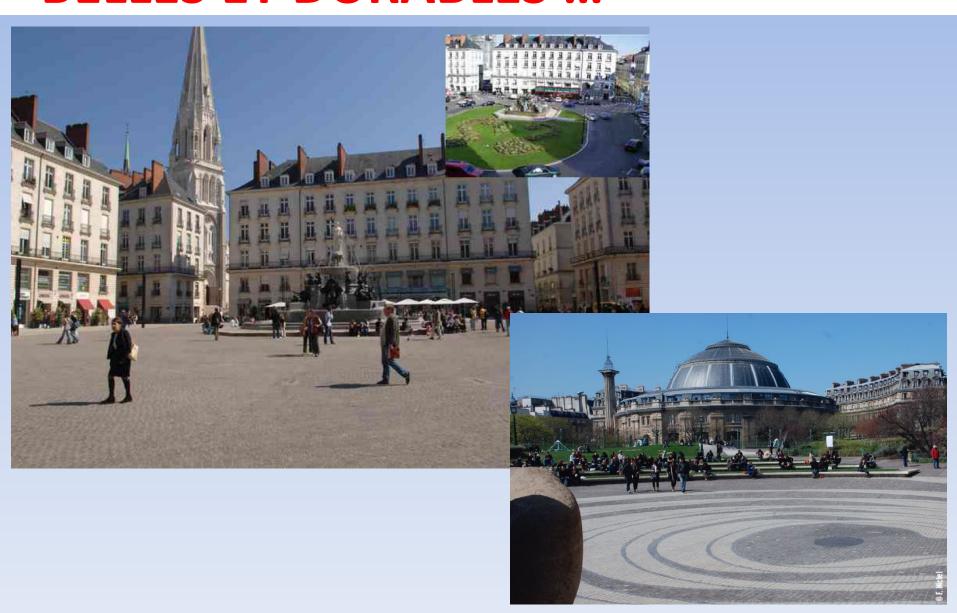
9/ RÉSUMÉ – VISION GLOBALE POUR L'AIDE A LA DECISION:

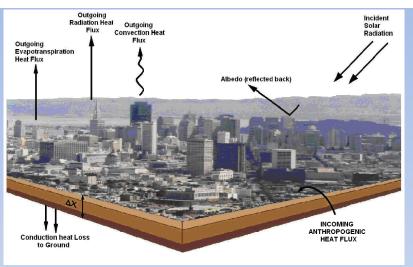
	Pavés			Dalles
Trafics	Т3	T2	T1	T4
Nombre de PL/j < 3,5 t	51 - 150	151 - 300	301 - 750	26 - 50
Caractéristiques de résistance des produits	В	Α	Α	Α
Contrôles qualité et des procédures de réception	В	А	А	Α
Formes d'appareillages	В	В	A (B)*	Α
Blocages de rives et longitudinaux	В	A (B)*	Α	Α
Principes de drainage	В	Α	Α	Α
Conditions d'exécution	В	Α	Α	Α
Cohérence assise/mode de pose/jointement	A (B)*	Α	Α	Α
Caractérisation des performances et du contrôle d'emploi des bétons et mortiers spéciaux	В	А	А	Α

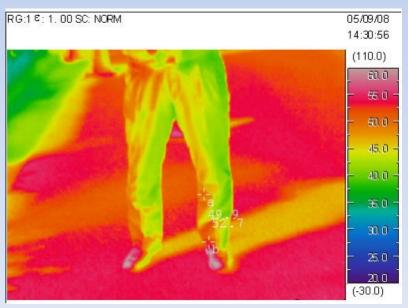
CONSEILS EXEMPLES

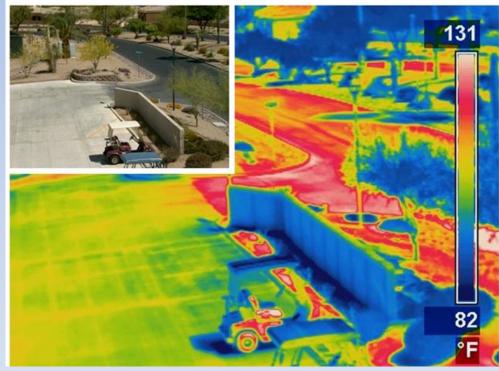
Les coûts de maintenance et de rénovation doit-être très sérieusement considérés en amont car près de 90% des coûts sont figés à la construction

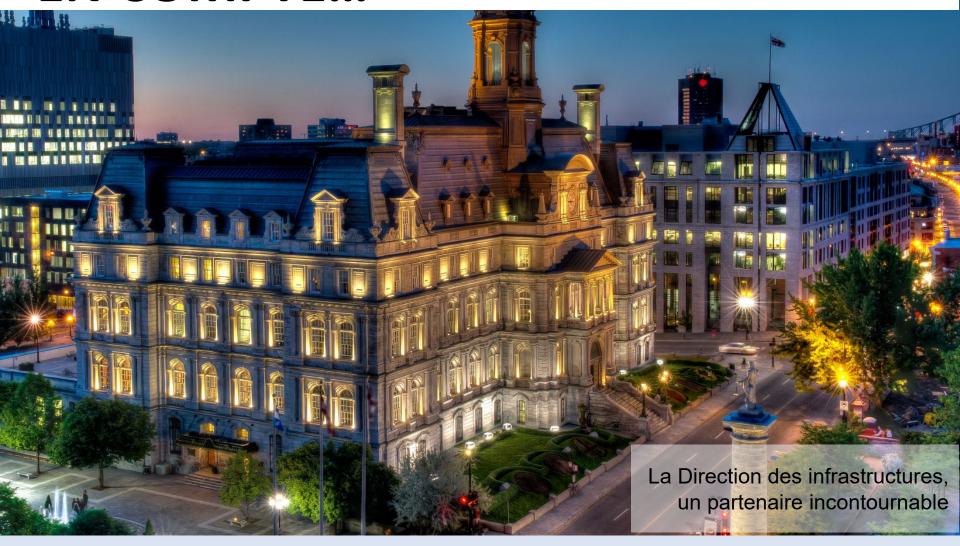
Les dégradations des voies Tramways

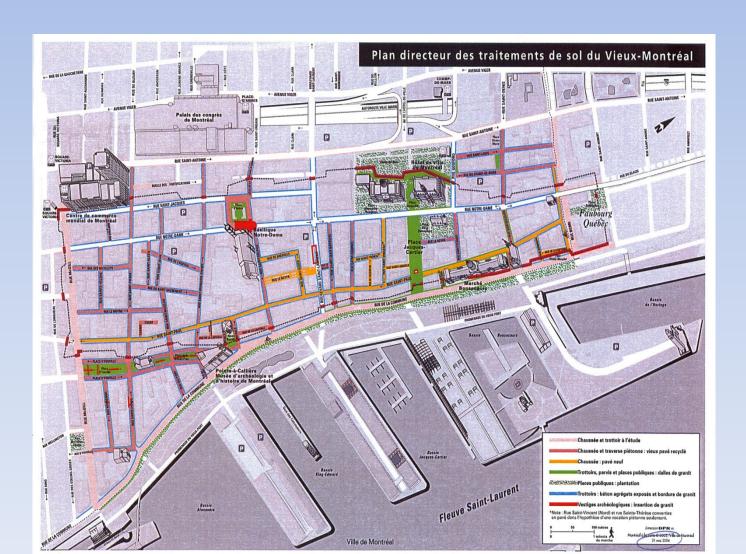



NE PAS VOIR TROP PETIT...


Une sous-estimation systématique de l'événementiel...


DES REALISATIONS ... BELLES ET DURABLES ...

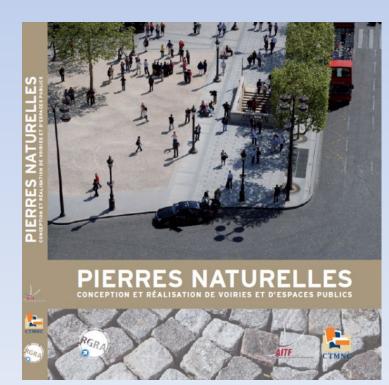




Rues du Vieux-Montréal

Pavé brut - Rapport de 1882 - Comité des chemins - Montréal

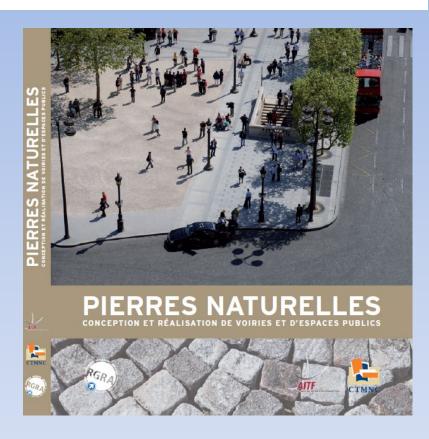
- « Nous croyons que les preuves … et nos propres observations nous justifient de recommander à la cité de paver toutes les rues servant au trafic lourd telles que les rues des Commissaires, William, Wellington, Craig et toutes les rues semblables avec le meilleur granit posé sur une fondation de béton ».
- « Nous adhérons fortement à l'opinion que nous avons émise que pour les rues où il y a un trafic lourd, le pavage en blocs de granite est meilleur et le plus durable ».


CONCLUSIONS

CONCLUSION 1

UNE NOUVELLE APPROCHE:

DU « DIMENSIONNEMENT EPAISSEUR » AU « DESIGN STRUCTUREL »


LA PIERRE NATURELLE EN EST L'AIGUILLON

CONCLUSION 2

SELON LE « DESIGN STRUCTUREL »:

- LE «COMPLEXE DE SURFACE»
- « L' ENVIRONNEMENT» DE L'ASSISE
- LES «SUJETIONS» D'EXECUTION
- LE «NIVEAU DE RISQUE» QUALITE

SONT PARTIE INTEGRANTE DE LA CONCEPTION

UN EXEMPLE DE PROGRES PORTE PAR LE LIVRE RGRA/AITF/CTMNC

SOURCES ET REMERCIEMENTS

- * AITF
- * CERTU
- * CEREMA ex CETE ILE DE FRANCE LROP LREP
- * CIMBETON
- * CTMNC
- * CTI
- * ENPC / PFE
- * JM. CLUZAUD CONSEIL
- * IFSTTAR
- * MAIRIE DE PARIS
- * RGRA
- * SPECBEA
- * USIRF